Stochastic simulation of riser-sections with uncertain measured pressure loads and/or uncertain material properties

نویسندگان

  • Jasmine Foo
  • Zohar Yosibash
  • George Em Karniadakis
چکیده

We investigate three-dimensional problems in solid mechanics with stochastic loading or material properties. To solve these problems, we use a spectral expansion of the solution and random inputs based on Askey-type orthogonal polynomials in terms of independent, identically distributed (i.i.d) random variables. A Galerkin procedure using these types of expansions, the generalized Polynomial Chaos (gPC) method, is employed to solve linear elasticity problems. An analagous spectral collocation formulation is used to study problems in nonlinear elasticity. These methods both cast the stochastic problem as a coupled or decoupled high-dimensional system of deterministic PDEs, which is then solved numerically using a deterministic p-finite element solver. We present algorithms for solving certain coupled systems arising from the stochastic Galerkin projection without modifying the original deterministic solver. Three-dimensional riser-sections undergoing elastic deformations due to random pressure loads are considered. We also model a riser-section with stochastic Young’s modulus undergoing deterministic loads. It is demonstrated that the gPC method provides accurate and efficient results at a speed-up factor of two and three orders of magnitude compared to traditional Monte-Carlo simulations. For nonlinear problems, the stochastic collocation method is also shown to be much faster than Monte-Carlo simulation, while still rivaling this method in simplicity of implementation. 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delay-dependent robust stabilization and $H_{infty}$ control for uncertain stochastic T-S fuzzy systems with multiple time delays

In this paper, the problems of robust stabilization and$H_{infty}$ control for uncertain stochastic systems withmultiple time delays represented by the Takagi-Sugeno (T-S) fuzzymodel have been studied. By constructing a new Lyapunov-Krasovskiifunctional (LKF) and using the bounding techniques, sufficientconditions for the delay-dependent robust stabilization and $H_{infty}$ control scheme are p...

متن کامل

A Reliability Approach on Redesigning the Warehouses in Supply Chain with Uncertain Parameters via Integrated Monte Carlo Simulation and Tuned Artificial Neural Network

In this paper, a reliability approach on reconfiguration decisions in a supply chain network is studied based on coupling the simulation concepts and artificial neural network. In other words, due to the limited budget for warehouse relocation in a supply chain, the failure probability is assessed for determining the robust decision for future supply chain configuration. Traditional solving ...

متن کامل

Stochastic modeling of coupled electromechanical interaction for uncertainty quantification in electrostatically actuated MEMS

This work proposes a stochastic framework based on generalized polynomial chaos (GPC), to handle uncertain coupled electromechanical interaction, arising from variations in material properties and geometrical parameters such as gap between the microstructures, applicable to the static analysis of electrostatic MEMS. The proposed framework comprises of two components – a stochastic mechanical an...

متن کامل

Nonlinear H Control for Uncertain Flexible Joint Robots with Unscented Kalman Filter

Todays, use of combination of two or more methods was considered to control of systems. In this paper ispresented how to design of a nonlinear H∞ (NL-H∞) controller for flexible joint robot (FJR) based on boundedUKF state estimator. The UKF has more advantages to standard EKF such as low bios and no need toderivations. In this research, based on spong primary model for FJRs, same as rigid robot...

متن کامل

Nonlinear analysis of radially functionally graded hyperelastic cylindrical shells with axially-varying thickness and non-uniform pressure loads based on perturbation theory

In this study, nonlinear analysis for thick cylindrical pressure vessels with arbitrary variable thickness made of hyperelastic functionally graded material properties in nearly incompressible state and clamped boundary conditions under non-uniform pressure loading is presented. Thickness and pressure of the shell are considered in axial direction by arbitrary nonlinear profiles. The FG materia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007